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1. INTRODUCTION

Model reduction techniques are widely used in numerical structural dynamics to synthesize
large matrix systems and perform fast computations of natural frequencies and mode
shapes. Several new model reduction techniques have been proposed in recent years.
Methods such as the Guyan (or static) reduction, dynamic condensation, the improved
reduced system (IRS) approach or the system equivalent reduction expansion (SEREP) may
be used with good results, especially over low-frequency ranges [1}5]. While the Guyan is
based solely on the sti!ness matrix reduction, the SEREP has been shown to map exactly
the mass and sti!ness matrices for a desired set of modes at an arbitrary set of d.o.f. using
a dynamic condensation technique with the full modal basis of the system. On the other
hand, the IRS uses Guyan reduction as an estimate of the reduction system and then makes
adjustments to compensate for the inertia e!ects that were ignored in the Guyan process,
without the penalty of requiring a full eigensolution. Advantages of using these techniques
are their relative e$ciency and cost e!ectiveness when compared with analysis on the full
system model. A disadvantage, however, is the approximate system descriptions that result
from their use, sometimes leading to serious error. Such methods also require skilled
selection of the number and location of the reduced degrees of freedom that can make up the
reduced system. If the degrees of freedom that represent the reduced system are chosen
improperly, poor solution results will follow [4]. Moreover, classical model reduction
techniques are not appropriate for synthesizing the dynamic behaviour of structures in the
middle- and high-frequency range, or with high modal densities. This fact leads the
structural analyst to prepare large numerical (FEM) models with high computational costs
or to use statistical energy analysis (SEA) methods to predict the dynamic behaviour of the
structure for high-frequency ranges. On the other hand, large "nite element models are
already prepared for static analysis purposes. Their lack of use for dynamic analysis leads to
an increase of the global pre-processing time which greatly consumes manpower resources.
The existence of a reliable condensation technique for structural middle and high
frequencies would also speed up the evaluation of novel materials and structures concepts
for aerospace and naval applications [6].

The aim of this paper is to explore the orthogonal wavelet transform for model synthesis
of structures in order to preserve the middle- and high-frequency spectra components only.
A new technique is illustrated using two simple simulated examples, namely a simply
supported beam and a framework structure. The technique is intended as an initial step
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towards a more comprehensive condensation method for numerical structural models in
the frequency ranges where classical condensation techniques fail to achieve the degree of
accuracy desired.

2. MODEL REDUCTION BASED ON WAVELET COMPRESSION

For an undamped m.d.o.f. system, withN degrees of freedom, the governing equations of
motion can be written in matrix form as

[M]�x(t)�#[K]�x (t)�"�f(t)�, (1)

where [M] and [K] areN�Nmass and sti!ness matrices, respectively, �x (t)� and �f(t)� are
N�1 vectors of time-varying displacements and forces respectively. The non-trivial
solution of the above homogenous equation ( f"0) is obtained solving the characteristic
equation

([K]!��[M])�X�"�0�. (2)

The complete free vibration solution can be expressed by two N�N eigenmatrices
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mode shape. There two matrices contain a full description of the dynamic characteristics of
the system.

The characteristic equation (2) can be pre-multiplied by [M]�� to obtain

([A]!��[I])[X]"�0�, (5)

where [A]"[M]��[K] and [I] is the identity matrix. Here, [A] represents all physical
parameters of the undamped system. This matrix can be transformed into wavelet space as

[A� ]"=�[A]=, (6)

where= represents the one-dimensional wavelet transform operator and=� its transpose.
Simply, the rows �b (n)� and columns �c (n)� of matrix [A] are expanded using the
orthogonal wavelet transform as
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where i, j, k and l are integer indices and the � (t) are the wavelet expansion functions that
form an orthogonal basis. Orthogonal basis-generating wavelets can be constructed using
Mallat's algorithm given in reference [7]. There exist a number of wavelet functions, which
can be used for the orthogonal expansion. The well-known Daubechies wavelets [8] are
applied in this paper as an example. However, the properties of the wavelet transform used
are independent of the type of wavelet function implemented [8}11]. For more details
regarding wavelet analysis the reader is referred to reference [9].

The orthogonal wavelet transform in equation (6) allows one to obtain the sparse
expansion of matrix [A] in which the wavelet coe$cients can be severely truncated.
This property has previously been used for compression of vibration data, feature



Figure 1. Wavelet transform of a (64�64) [A] matrix, represented graphically.
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extraction/selection [10, 11] and chaos/noise analysis [12]. The sparse expansion can also
be utilized for model reduction, which can be achieved by keeping all wavelet coe$cients of
the system matrix [A] larger than some threshold and setting all smaller coe$cients to zero.
Figure 1 gives an example of graphical representation of the two-dimensional wavelet
transform in equation (6). It is clear here that the matrix becomes sparse in the wavelet
domain. The structural model reduction based on the orthogonal wavelet transform can be
implemented by reducing the matrix [A� ] using di!erent thresholds and then building up
a new model from the reduced wavelet matrix by the inverse of the wavelet transform. The
threshold can be adjusted to vary the fraction of preserved expansion coe$cients. The
important fact is that after thresholding, the new model can quite accurately represent the
original matrix [A]. Note that this kind of threshold makes the matrix sparse, but does not
change the size of the original matrix. It is also very important in this application that the
matrix in wavelet space is truncated according to the amplitude of the components, not
their position in the matrix. The thresholding in this approach preserves the high-frequency
components of the original model. This is because the maximum values are mainly located
on the main diagonal. Figure 2 shows an example of how the full model matrix [A] can be
reconstructed by only 307, rather than 1024, of its wavelet coe$cients. Here, the amplitude
and the position of the elements in each matrix [A]

�
are represented as three-dimensional

plots.
Following equation (5), the new model matrix [A]

�
can be then used to represent the

structure as

([A]
�

!��
�
[I])�X�"�0� (9)

for which the only non-trivial solutions are those satisfying the condition

det �[A]
�

!��
�
[I] �"0. (10)



Figure 2. Graphical representation of using the orthogonal wavelet transform in model reduction: (a) graphical
representation of the full model matrix [A] (32�32); (b) the model is transformed into the wavelet basis (32�32),
which has 1024 coe$cients; (c) the wavelet transform is reduced to 307 coe$cients; 70% of 1024 coe$cients are set
to zero and (d) the new full model [A]

�
(32�32) is then reconstructed from the remaining 30%.
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This yields N possible positive real solutions (��
��
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), which are the
approximated undamped natural frequencies of the analyzed system obtained from the new
model matrix [A]

�
.

The size of the wavelet coe$cients, a
���

, drops o! rapidly with j and k for large matrices.
This means that most of the wavelet coe$cients for a large model matrix are small and close
to zero. The new model can then be reconstructed using a small number of its wavelet
coe$cients. This property enhances the use of the wavelet transform in model reduction for
larger structure by deleting all small coe$cients. The wavelet expansion also allows for
a more accurate local description and separation of the model characteristics.

3. APPLICATION EXAMPLES

The application of the orthogonal wavelet transform method is illustrated using two
simple examples. There are a 32-d.o.f. simply supported beam and a 105-d.o.f. framework
structure. The modal assurance criterion (MAC) is used to compare the similarity between
the reduced model [A]

�
obtained by orthogonal wavelet transform and the full model [A].

The MAC is de"ned here as
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where ��
�

�
�
and ���

�
are the reduced model and the full model mode shape vectors

respectively. It gives clearer indication of modal correlation and is real and bounded



Figure 3. Simply supported beam.

Figure 4. Di!erent models of the simply supported beam obtained using di!erent thresholds: (a) the full model
matrix; (b) the model reconstructed from 60%; (c) the model reconstructed from 45% and (d) the model
reconstructed from 30% of the wavelet coe$cients.
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between 0 and 1. Arbitrarily scaled reduced and full modes ��
�
�
�
and ���

�
are similar, or

correlated, if their MAC value is close to 1 and uncorrelated if the MAC value
is small.

3.1. SIMPLY SUPPORTED BEAM

The "rst structure considered is a 0)05 m thick and 2)2 m long steel simply supported
32-d.o.f. beam shown in Figure 3. The full model matrix [A] is of size (32�32), which means
the structure has 32 natural frequencies. The wavelet transform of matrix [A] was
calculated and di!erent thresholds were applied to the wavelet coe$cients. Each
thresholding resulted in a new model, as shown in Figure 4. Each of these new models gives
di!erent approximations for the natural frequencies at di!erent modes. Figure 5 shows
a plot of theMAC values against di!erent modes for the 35% reduced model.Modes, which
have MAC values greater than 0)7 are considered at di!erent thresholds. Tables 1 and
2 show the natural frequencies obtained by two di!erent threshold levels; here each
threshold converges to di!erent modes at higher MAC values. The results of the three



Figure 5. MAC values against mode number for 35% reduced model of the beam.

TABLE 1

Results of 60% reduced model for threshold of [A� ]'0)02*max coe.cient

Full model Reduced model Error
Highest MAC no. Mode number ( f�10�Hz) ( f�10� Hz) (%)

0)7053 32 1)4959 1)4810 0)9945
0)7746 18 0)5418 0)6211 14)6504
0)9176 22 0)7931 0)7967 0)4466
0)9748 19 0)6400 0)6323 1)1991
0)9775 24 0)9559 0)9489 0)7310
0)9918 28 1)2749 1)2709 0)3167
0)9966 30 1)3880 1)3765 0)8237
0)9973 26 1)1218 1)1267 0)4377

TABLE 2

Results of 36% reduced model for threshold of [A� ]'0)06*max coe.cient

Full model Reduced model Error
Highest MAC no. Mode number ( f�10�Hz) ( f�10� Hz) (%)

0)7413 26 1)1218 1)1463 2)1796
0)7714 24 0)9559 0)9917 3)7464
0)8506 28 1)2749 1)2542 1)6232
0)9213 30 1)3880 1)3300 4)1794
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common modes obtained by the di!erent threshold levels are compared in Table 3. The
frequency response function (FRF) for the full model and the 40% reduced model is shown
in Figure 6.



TABLE 3

Comparing the results of the three modes at four di+erent thresholds

Mode
number

Full model
( f�10� Hz)

30%
red. model

36%
red. model

45%
red. model

60%
red. model

26 1)1218 1)1546 1)1463 1)1353 1)1267
(2)92%) (2)18%) (1)20%) (0)44%)

28 1)2749 1)2127 1)2542 1)2591 1)2709
(4)88%) (1)62%) (1)24%) (0)32%)

30 1)3880 1)3061 1)3300 1)3428 1)3765
(5)90%) (4)18%) (3)25%) (0)82%)

Figure 6. FRF for full model and 40% reduced model for the simply supported beam: **, full model; )))))))),
40% reduced model.
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3.2. FRAMEWORK STRUCTURE

The second example considered was a steel framework of 7 m height and 4 m wide as
shown in Figure 7. The framework model matrix [A] was of the size (105�105), which is
not an integer power of 2; (2���2��). Since the orthogonal wavelet transform computation
is based on the FFT, it can only be found for a model matrix of size (2���2��), zeros are
added in rows and columns to make the model matrix [A] to the nearest size of (2���2��)
which is (128�128). The wavelet transform of the matrix is then found and di!erent
threshold levels are applied. When the new model is reconstructed from the reduced wavelet
basis, the rows and columns of the zeros are removed to regain the size of the full model.
Figure 8 shows a plot of the MAC values against di!erent modes for the 30% reduced
model. Modes, which have MAC values greater than 0)7, are considered at di!erent
threshold levels. Tables 4}6 show the results of the approximated frequencies using di!erent
threshold levels. The frequencies of the last "ve modes are compared for di!erent thresholds
in Table 7. The FRF for the last frequencies for the full mode and the 40% reduced model is
shown in Figure 9.



Figure 7. Framework has 38 nodes of three d.o.f.s each and it is clamped at its three ends, which results in an
105-d.o.f. structure.

Figure 8. MAC values against di!erent modes for 30% reduced model of the framework.

TABLE 4

Results of 30% reduced model for threshold of [A� ]'0)005*max coe.cient

Full model Reduced model Error
Highest MAC no. Mode number ( f�10�Hz) ( f�10� Hz) (%)

0)7256 102 2)3973 2)3146 3)4511
0)8377 98 2)1577 2)1547 0)1374
0)8520 97 2)0768 2)0284 2)3320
0)8642 101 2)3486 2)3146 1)4466
0)9511 105 2)6378 2)6410 0)1227
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TABLE 5

Results of 20% reduced model for threshold of [A� ]'0)01*max coe.cient

Full model Reduced model Error
Highest MAC no. Mode number ( f�10�Hz) ( f�10� Hz) (%)

0)7049 103 2)4199 2)3974 0)9315
0)7822 104 2)6313 2)6585 1)0342
0)8349 105 2)6378 2)6156 0)8417
0)9198 102 2)3973 2)4249 1)1513
0)9475 101 2)3486 2)3399 0)3686

TABLE 6

Results of 15% reduced model for threshold of [A� ]'0)016*max coe.cient

Full model Reduced model Error
Highest MAC no. Mode number ( f�10�Hz) ( f�10� Hz) (%)

0)7390 104 2)6313 2)6735 1)6041
0)8021 102 2)3973 2)4028 0)2276
0)8214 103 2)4199 2)3493 2)9174
0)8658 101 2)3486 2)2621 3)6813
0)9460 105 2)6378 2)5820 2)1166

TABLE 7

Comparing the results of the last ,ve modes at di+erent thresholds

Mode
number

Full model
( f�10� Hz)

13%
red. model

15%
red. model

20%
red. model

25%
red. model

44%
red. model

101 2)3486 2)3108 2)2621 2)3399 2)3111 2)3361
(1)61%) (3)68%) (0)37%) (1)59%) (0)53%)

102 2)3973 2)4143 2)4028 2)4249 2)3111 2)3952
(0)71%) (0)23%) (1)15%) (3)59%) (0)09%)

103 2)4199 2)3404 2)3493 2)3974 2)4167 2)4168
(3)29%) (2)92%) (0)93%) (0)13%) (0)13%)

104 2)6313 2)6425 2)6735 2)6585 2)7007 2)6436
(0)42%) (1)60%) (1)03%) (2)63%) (0)47%)

105 2)6378 2)5209 2)5820 2)6156 2)6397 2)6268
(4)43%) (2)12%) (0)84%) (0)07%) (0)42%)
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4. DISCUSSION

From the results obtained for both the simply supported beam and the framework
structure, it is clear that there is a high correlation between the frequencies of the reduced
model and the full model at higher modes. Figures 5 and 8 show thatMAC values are close
to unity at higher modes, whereas they are small and close to zero at the "rst modes.

Figures 6 and 9 show that the FRF peaks for the full model and the reduced model are
close at higher frequencies and thus at higher modes. This means that, in contrast to other



Figure 9. FRF for full model and 20% reduced model for the framework:**, full model; ))))))), reduced model.

Figure 10. Comparing the frequencies obtained using di!erent thresholds with that of the full model for the
simply supported beam:**, full model; �, 60% reduced model; *, 45% reduced model; �, 30% reduced model.
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model reduction techniques, the orthogonal wavelet transform converges better for higher
mode frequencies.

The error associated with the reduced model based on the orthogonal wavelet transform
at di!erent threshold levels is in general (see Figures 10 and 11). Figure 11 shows closer
agreement between the full and reduced model frequencies for the framework at smaller
models than that shown on Figure 10 for the simply supported beam. Table 3 and 7 show
that the maximum error of the approximated frequencies using the orthogonal wavelet
transform for the simply supported beam and the framework are 5)90 and 4)43%
respectively. Each threshold level results in a di!erent approximation for di!erent modes at



Figure 11. Comparing the results obtained using di!erent thresholds with that of the full model for the
framework: **, full model; �, 44% reduced model; �, 30% reduced model; �, 15% reduced model.

Figure 12. Error at di!erent thresholds for two modes in the beam and the framework: *�*, f (30) beam;
f (105) framework.
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higherMAC values, as shown in Tables 1, 2 and 4}6. Comparing the results in Tables 3 and
8 for the same modes at di!erent threshold levels it will be observed that the error decreases
as the model gets larger. This is a consequence of retaining more coe$cients in the wavelet
basis of the model, which represent more dynamic characteristics of the structure. Figure 12
gives a comparison between the error obtained at di!erent threshold levels for modes 30
and 105 of the simply supported beam and the framework structure respectively. It can be
seen that the results for the framework structure converge more accurately to the full model
at smaller models than that for the simply supported beam.
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One property of the orthogonal wavelet transform is the drop in the size of the wavelet
coe$cients a

���
for a large class of matrix. This means that, for a large model matrix, many

wavelet coe$cients are small and close to zero. This in turn leads to higher reduction in the
wavelet basis of the model and a new model can be reconstructed using a smaller number of
its wavelet coe$cients. Therefore, the orthogonal wavelet transform performs better for
larger structures than for small ones. This is clear when the comparison between the results
for the (32�32) simply supported beam model and the (105�105) framework structure
model are made. Table 3 shows that the maximum reduction for the wavelet basis of the
simply supported beam model is 30%, which has a maximum error of 5)90% for mode 30.
On the other hand, Table 7 shows that the maximum reduction for the framework is 13%
giving a maximum error of 4)43% for mode 105.

5. CONCLUSIONS

The orthogonal wavelet transform has been used for model reduction of structures. The
method has been illustrated using a simply supported beam and a framework structure. The
method preserves higher mode frequencies more accurately than lower mode frequencies.
Comparing the results for the framework and the beam, the orthogonal wavelet transform
converges more accurately to the full model at smaller models for larger structures than that
for small structures (i.e., 13% reduced model for the framework and 30% reduced model for
the simply supported beam). The error in predicting the frequencies at higher modes is not
signi"cant for the reduced model using the orthogonal wavelet transform. The maximum
errors obtained were 5)90% for the simply supported beam and 4)43% for the framework.

In summary, the orthogonal wavelet transform shows the potential for modal reduction
of structures. However, more investigations are required to con"rm the "ndings. The future
work should involve the thresholding procedure based on the position and/or amplitude of
wavelet coe$cients. This will improve the convergence for lower mode frequencies. Also, it
is important to "nd the correlation between wavelet coe$cients and the degrees of freedom
of the numerical models for engineering application of the proposed method.
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